Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(2): 285-298, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38278155

RESUMO

Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data-driven functional phenotyping of in vitro neuronal cultures recorded by high-density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike-sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine-learning-assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microeletrodos , Neurônios Dopaminérgicos , Fenômenos Eletrofisiológicos , Potenciais de Ação/fisiologia
2.
Adv Biol (Weinh) ; 5(3): e2000223, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33729694

RESUMO

Recent advances in the field of cellular reprogramming have opened a route to studying the fundamental mechanisms underlying common neurological disorders. High-density microelectrode-arrays (HD-MEAs) provide unprecedented means to study neuronal physiology at different scales, ranging from network through single-neuron to subcellular features. In this work, HD-MEAs are used in vitro to characterize and compare human induced-pluripotent-stem-cell-derived dopaminergic and motor neurons, including isogenic neuronal lines modeling Parkinson's disease and amyotrophic lateral sclerosis. Reproducible electrophysiological network, single-cell and subcellular metrics are used for phenotype characterization and drug testing. Metrics, such as burst shape and axonal velocity, enable the distinction of healthy and diseased neurons. The HD-MEA metrics can also be used to detect the effects of dosing the drug retigabine to human motor neurons. Finally, it is shown that the ability to detect drug effects and the observed culture-to-culture variability critically depend on the number of available recording electrodes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Humanos , Microeletrodos , Neurônios Motores , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...